9 minutes | Oct 27th 2020

Can We Wipe Out All Coronaviruses for Good? Here's What a Group of 200 Scientists Think

One vaccine to rule them all. That was the blue sky goal for a new global collaboration with hopes to beat coronaviruses. I’m not just talking about SARS-CoV-2, the virus responsible for our current pandemic. I’m talking about all coronaviruses—past, present, and future—even those that haven’t yet made the leap into humans. Published in Science, the unique collaboration tapped nearly 200 scientists crossing academic and industry borders, and asked: do coronaviruses have a shared pressure point? If so, can we exploit it to engineer a universal vaccine against the entire viral family? Short answer: yes, and maybe. The team brought the whole modern biology toolshed to decipher three coronaviruses: SARS-CoV-2, SARS-CoV-1, and MERS-CoV, each of which has wreaked havoc on human society. By analyzing how these viruses interact with human cells, the team was able to find a handful of critical shared proteins that the viruses use to hijack our bodies. They didn’t stop at the hand-waving hypothesis stage. Using CRISPR, one group systematically tested these vulnerable viral proteins to see which ones destroyed the virus’ ability to replicate. The baton then got passed again to another group, which used hundreds of thousands of medical billing data from people who either tested positive or were presumed positive for Covid-19, to verify those viral protein candidates. The result is a playbook on how to beat an entire family of dangerous viruses. Remember: these viral pressure points aren’t just for SARS-CoV-2. They’re shared among all currently known coronaviruses that made the leap from animals to humans. While it doesn’t mean that any and all coronaviruses—including those we haven’t yet had the displeasure to meet—will have the same vulnerability, it’s a start. Because the bitter truth is that when it comes to coronavirus epidemics or pandemics, scientists agree on one thing—there are more in our future. And it’s high time to start playing offense. Profile of a Killer Coronavirus is almost synonymous with Covid-19, social distancing, and frustration. But it’s not one virus—it’s a whole family. The good news is that we’re already well acquainted with some members of the family. One estimate suggests these buggers have been around for 10,000 years, and we’re aware of dozens of strains, with seven that can infect humans. Many coronaviruses just cause a sniffle or light cough—also known as the common cold. The problem sparks when a viral strain, normally happily living in a bat, pig, or rodent, completely benign, mutates enough to be able to infect humans. Adding to the series of unfortunate events, the virus gets the opportunity to make that dreary carrier-to-human hop. The strain then becomes dangerous to humans, we don’t have any immunity against it—and the virus blazes through our population like wildfire. But here’s the thing: coronaviruses are genetically similar. In other words, many members are likely to enter human cells with similar protein “keys,” and replicate inside cells with a shared molecular machinery. Rather than tackling coronavirus assaults one-by-one as they occur like whack-a-mole, it makes far more sense to find their common Achilles heel. Molecular Social Distancing Coronaviruses enter and replicate inside a human cell with a protein handshake. To enter a cell, proteins on the virus grab onto a protein dotted on our cells. Our naïve cells invite the virus in, often through an additional molecular process. Once inside, like a bad house guest, the virus then overrides our cells’ internal machinery to make copies of itself, damaging our cells in the process. In academic speak, protein handshakes are called “protein interactions,” where the virus and the human cell physically snuggle together to help the virus gain access and replicate. Identify and force apart those interactions, and we can block the virus from attacking our cells. That’s where the new study began. Based on early work on the...